
Two-State Model of Antiaromaticity: The Triplet State. Is Hund’s Rule Violated?

Shmuel Zilberg and Yehuda Haas*
Department of Physical Chemistry and the Farkas Center for Light Induced Processes,
The Hebrew UniVersity of Jerusalem, Jerusalem, Israel 91904

ReceiVed: July 21, 1998; In Final Form: October 5, 1998

A theoretical and computational study of the lowest lying triplet state of cyclic hydrocarbons having an even
number (2n) of π electron bonds (antiaromatic compounds) is presented. In these systems, the ground singlet
state of the most symmetric structure is distortive, being a transition state for the reaction exchanging two
bond-alternating structures. As a resonance hybrid of two equivalent valence bond (VB) structures, this
singlet is a stabilized biradical of B1g symmetry. The lowest lying triplet of the most symmetric form is
strongly bound, similar in geometry to the 11B1g singlet transition state,and is always higher in energy. The
energy difference between the two states is remarkably constant regardless of the ring size. This apparent
violation of Hund’s rule is derived from the symmetry properties of the system. The triplet state is treated
as a resonance hybrid ofn equivalent covalent structures, each havingn - 1 singlet electron pairs and one
pair of two spin parallel electrons (triplet pair); part of the exchange resonance stabilization is lost in the
triplet, making the singlet more stable. Thus, this effect is due to the difference between the static resonance
stabilization of the triplet and the singlet states. In contrast, Hund’s rule always holds for biradical systems
having only one dominant VB structure. Spectroscopic observation of these biradical triplets is possible by
photodetaching an electron from the monoanion, as recently demonstrated experimentally. The model
predictions are confirmed computationally for several examples including H4, H8, cyclobutadiene, cyclooc-
tatetraene, pentalene, and heptalene.

1. Introduction

Hund’s rule violations have been noted in many systems that
are considered as having a biradical character. Examples include
the 90° twisted form of ethylenes1 and the ground state of the
most symmetric form of antiaromatic molecules. Cyclobuta-
diene (CB) has been extensively discussed in this context.2-4

Various explanations based on MO theory were offered,
including dynamic spin polarization5,6 and the pseudo Jahn
Teller effect.3 The possible role of 4-fold symmetry was pointed
out,7 and the need to include configuration interaction in order
to account for apparent violations of Hund’s rule has been
repeatedly emphasized.8 It was recognized that whereas in a
single configuration the exchange interaction always makes the
triplet of lower energy, when more configurations are added,
electron correlation may outweigh it. However, a general
prescription was not given.

Ovchinikov9 used a Heisenberg Hamiltonian to describe the
perfectly correlated polyelectronic wave function of hydrocar-
bons, including cyclic ones. Klein and co-workers10 developed
the concept further and gave it a more rigorous mathematical
foundation. These treatments are sometimes dubbed as valence
bond ones, in which spin pairing is maximized.

A VB-based account for exceptions to Hund’s rule was given
by Voter et al.11,12 for the cases of twisted ethylene and square
CB. They showed that resonance stabilization between two
equivalent structures is dominant in making the singlet state
more stable than the triplet. The physical basis for this
stabilization is the contribution of all four electrons involved
in the bonding of these system, as first suggested by Mulder.13

Recent experimental studies have considerably increased the
interest in these systems. Negative ions may be prepared in
the gas phase by electron attachment14 or by a chemical
reaction.15,16 Photodetachment of the electron prepares the

neutral with the initial geometry of the negative ion, and
measurement of the electron’s kinetic energy allows the mapping
of the neutral’s low lying electronic states. This has been
recently done for cyclooctatetraene (COT)17 and some other
biradicals,18 confirming experimentally that the singlet states
of many biradicals are lower in energy than the triplets. Matrix
isolation spectroscopy has been a major source of information
on reactive species such as biradicals. Recently, pentalene was
isolated and investigated in an argon matrix.19 These experi-
mental findings on “classical” antiaromatic molecules and
related biradicals led us to reconsider the relative stability of
low lying singlet and triplet states.

We base our approach on the assumption that these molecules
are two-state systems, namely systems that may be considered
as resonance hybrids of two covalent structures.20 The valence
bond (VB) approximation is a convenient method for dealing
with such systems and will be used extensively. We are
particularly interested in systems having an even number of
electron pairs, as is the case in antiaromatic molecules. The
model, which was previously used to consider the properties
of transition states in valence isomerization reactions and their
singlet twins,21 has been used in ref 22 (henceforth referred to
as paper 1) to analyze the properties of the singlet states of
antiaromatic systems; It is now extended to the lowest lying
triplet. It is shown that the first singlet state, S0, which is formed
by an out-of-phase combination of the two VB structures, is
the ground state in this case and that the triplet state lies very
close to it, but always at a higher energy. The S0 state is a
transition state so that the triplet, which usually is found only
about 0.6 eV above it, is the lowest lying bound state of the
system. The mode that serves as a reaction coordinate between
the two distorted forms of S0 has a very high frequency in the
T1 state.
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2. Model

The model is based on the approach presented previously20,22

for the singlet states. Consider a cyclic system having 2n
equivalent bonds formed by singlet electron pairs. Examples
are H2n (n ) 2, 4, ...) molecules, with 4n σ electrons, or C2nH2n

(n ) 2, 4, ...), with 4n π electrons. As shown in Figure 1 of
Paper 1, pairing of all the binding electrons can be achieved in
two equivalent ways: using the H2n system as an example, these
are H1H2, H3H4, ..., H2n-1H2n and H1H2n, H2n-1H2n-2, ..., H3H2.
These two structures correspond to two VB Kekule´, which will
be termed|L〉 and |R〉 and may be described by the shorthand
notation introduced earlier:20,22

With L containing a normalization factor and all permutations
over the atomic orbital wave functionsi (1 ) 1, 2, ..., 2n).
Likewise, the other Kekule´ wave function,|R〉, has the form

The actual wave function of the system is constructed from
the combination of the two VB structuresL and R. Two
combinations are possible, an in-phase one,L + R, and an out-
of-phase one,L - R. In the case of an even number of electron
pairs (as pertains for the present case), the out-of-phase
combination is the ground state.20

Triplet states are formed by inverting one of the spin functions
in one of the electron pairs, keeping all others paired. There
aren possible ways of doing this for each of the structuresL
andR of a cyclic molecule having 4n electrons, as exemplified
in Figure 1 for cyclobutadiene (CB) and cyclooctatetraene
(COT), giving a total of 4n possible structures. However, not
all of them are independent.23 The spin functions of the two
electrons may be written asRâ-âR for the singlet state andRR,
ââ, andRâ + âR for the triplet, withR denoting spin 1/2 and
â denoting spin-1/2. For comparison of the singlet and triplet
states of the same configuration, it is convenient to use theRâ
+ âR triplet function, which in the absence of a magnetic field
is degenerate with the other two.

Let us consider first the special case of CB (or any four-
electron problem). This problem was extensively dealt with
previously,11,12,24and is used as an example before discussing

the general case. TheL andRsinglet functions may be written
as

so that

The two L triplets (see Figure 1) may be written as

and the two R triplets as

It is easily seen that3|L12〉 + 3|L34〉 + 3|R12〉 + 3|R34〉 ) 0 so
that only three of the four possible triplet structures are
independent. In this special case, we find that the wave function
corresponding to the out-of-phase combination|L-R〉 is

The energy of this state is

whereH is the Hamiltonian of the system. It is seen to be a
sum of terms

whereQ ) 〈12h34h|H|12h34h〉 is the Coulomb integral andHcyclic

) 〈12h34h|H|1h23h4〉.
The energy of the ground singlet state of square CB (which

is a transition state) is given by25,20

The exchange terms are of two kinds,26,27one-electron terms
of the form 2Si,i+1〈i|h|i+1〉, representing the attractive interaction
between two nuclei and the electronic charge between them,
and two-electron terms of the form〈i,i+1|g|i+1,i〉 representing
the repulsive interaction between two electron clouds. The
former completely outweighs the latter, as well as the higher
exchange terms involving nonadjacent electrons. Comparison
of eq 10 and eq 11 shows that the singlet state is more stable
than the triplet,due to the attractiVe exchange terms. This turns
out to be a general property of the even parity systems, both
singlet and triplet are stabilized by resonance interactions and
the cyclic terms. However,there is always an extra exchange
stabilization of the singlet.

Figure 1. VB structures of the lowest lying singlet and triplet states
of CB and COT.

1|L〉 ) (12h-1h2)(34h-3h4)...(2n-12n-2n-12n) (1)

1|R〉 ) (12n-1h2n)(2n-12n-2-2n-12n-2)...(32h-32h) (2)

1|L〉 ) (12h-1h2)(34h-3h4) ) 12h34h-12h3h4-1h234h+123h4 (3)

1|R〉 ) (14h-1h4)(32h-3h2) ) 14h32h-14h3h2-1h432h+1h43h2 )
-12h34h + 123h4h+1h2h34-1h23h4 (4)

1|L-R〉 ) 2(12h34h+1h43h2)-12h3h4-12h34h+14h3h2+1h432h (5)

3|L12〉 ) (12h+1h2)(34h-3h4) ) 12h34h-12h3h4+12h34h-1h23h4
(6a)

3|L34〉 ) (12h-1h2)(34h+3h4) ) 12h34h+12h3h4-12h34h-1h23h4
(6b)

3|R14〉 ) (14h+1h4)(32h-3h2) ) 14h 32h-14h3h2+1h432h-1h43h2 )
-12h 34h+123h4h-1h2h34+1h23h4 (7a)

3|R32〉 ) (14h-1h4)(32h+3h2) ) 14h 32h+14h3h2-1h432h-1h43h2 )
-12h 34h-123h4h+1h2h34+1h23h4 (7b)

3|L-R〉 ) 3|L12〉 + 3|L34〉 - 3|R14〉 - 3|R32〉 )
12h34h-1h23h4 (8)

E3(L-R) ) 〈12h34h-1h23h4|H|12h34h-1h23h4〉 (9)

E(3(L-R)) ) 2Q - 2Hcyclic (10)

E(1(L-R)) ) 2Q - 2Hcyclic + ∑
i

Kii+1 +

higher exchange terms (11)
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We now turn to the general case. TheL wave function is

whereM ) |12h34h ... 2n-12n| andpi,j the permutation operator
exchanging thei and j electrons.

Therefore,

whereI is the identity permutation operator, the first summation
is over two-electron permutations, the second over four, etc.,
and the last is the cyclic permutation. Let us denote byW the
determinant obtained by permuting the spins of all electron pairs

This allows a more compact and symmetric representation
of |L〉, in which the maximum number of permutations isn/2
rather thann.

The last term contains all ordered permutations that exchange
n/2 electron pairs, starting from eitherM or W. The symmetric
form is possible since there is an even number of electron pairs
so that the same permutations may be written either by starting
from M or backward fromW. Thus, in a system with 2n
electron pairs, we havep1,2M ) p3,4p5,6 ... p2n-1,2nW, p1,2p3,4M
) p5,6 ... p2n-1,2nW, etc.

A similar expression can be written for|R〉

This is possible since in the cyclic molecule atom 1 is connected
to both atom 2 and atom 2n. In this case, the permutation cycles
are in the opposite sense to those used for theL structure (note
the sign change20). R also may be expressed as a combination
of M andW:

leading to

For the triplet state, a typical VB structure has the form

in which the bond between atoms 1 and 2 was replaced by two
electrons with parallel spin. We wish to cast this expression in
a form similar to that of the singlet function. It is noted that
the only difference between eq 12 and eq 19 is the plus sign in
the first term. This means that whereas alln pairwise permuta-
tions appearing in the expression for the singletL have the same
sign, in the triplet functionL12, one will have the opposite sign.
Since we wish to compare the singlet and triplet combinations,
it is convenient to preserve the form of eq 13 by keeping the
same number of pairwise permutations, (n in this case, thus
having an extra permutation instead of one less), adding two
permutations with the opposite sign to bring the total number
back to the correct one. To keep the number of permutations
down, we again write them out using the two cyclic permutations
M andW, obtaining

A similar expression can be written for all other3|L〉 triplet
functions (3L34, ... 3L2n-1,2n) and for the3|R〉 functions (3R1,2n,
3R2n-1,2n-2 ... 3R32). Altogether, in a 4n-electron system, there
are 4n terms such as this (not all independent).

It will be convenient to use a shorthand notation, denoting
the sum of all permutations exchanging one pair of electrons
going clockwise around the ring byP1, those exchanging two
pairs byP2, etc. There are 2n (n even) electron pairs in each
of the structuresL andR so that a maximum ofn pairs can be
exchanged. Using the two cyclic permutationsM and W as
the basis, eq 15 may be written as

and eq 17 as

where P1° denotes a permutation ofi electron pairs going
counterclockwise around the ring.

In this notation, the triplet wave functions may be written as
the sums

(The coefficient of the last permutation (Pn/2) vanishes; we wrote
the expression explicitly to emphasize the form similarity to
the singlet state function (eq 18)). Note that in the triplet,M

1|L〉 ) (12h-1h2)(34h-3h4) ... (2n-12n-2n-12n) )
(1-p1,2) (1-p3,4) ... (1-p2n-1,2n)M (12)

1|L〉 ) {I - ∑
i)0

n-1

p2i+1,2i+2 + ∑
i)0,j>i

n-3

p2i+1,2i+2p2j+1,2j+2 - ... +

p1,2p3,4...p2n-1,2n}M (13)

W ) p1,2p3,4 ... p2n-1,2nM ) 1h23h4 ...2n-12n (14)

1|L〉 ) {I - ∑
i)0

n-1

p2i+1,2i+2 + ∑
i)0,j>1

n-3

p2i+1,2i+2p2j+1,2j+2 - ... +

(-1)n/2 ∑
i<j...<k

p2i+1,2i+2p2j+1,2j+2 ... p2k+1,2k+2}(M + W) (15)

1|R〉 ) (12n-1h2n) (2n-12n-2-2n-12n-2) ... (32h-3h2) )
-(1-p1,2n)(1-p2n-1,2n-2) ... (1-p3,2)M (16)

1|R〉 ) -{I - ∑
i)0

n(2n+1)1)

p2i+1,2i + ∑
i)0,j>i

n-2

p2i+1,2ip2j+1,2j - ... +

(-1)n/2 ∑
i<j<...<k

p2i+1,2ip2j+1,2j ... p2k+1,2k}(M + W) (17)

1|L-R〉 ) {2I - ∑
i)1

pi,i+1 + ∑
i)1,j>i

pi,i+1pj,j+1 - ... +

(-1)n/2 ∑
i<j<...<k

pi,i+1pj,j+1 ... pk,k+1}(M + W) (18)

3|L12〉 ) (12h+1h2) (34h-3h4) ... (2n-12n-2n-12n) )
(1+p1,2) (1-p3,4) ... (1-p2n-1,2n)M (19)

3|L12〉 ) -{I + 2p12 - ∑
i)0

n-1

p2i+1,2i+2 - 2p12∑
i)0

n-1

p2i+1,2i+2 +

∑
i)0,j>i

n-3

p2i+1,2i+2p2j+1,2j+2 - ... +

(-1)n/2 ∑
i<j<k...<n/2

p2i+1,2i+2p2j+1,2j+2 ... p2k+1,2k+2}(M - W)

(20)

1|L〉 ) {I-P1+P2- ... +(-1)n/2(Pn/2)}(M + W) (21)

1|R〉 ) {I- P1°+P2° - ... +(-1)n/2(Pn/2°)}(M + W) (22)

3|L〉 ) ∑
t)0

n-1
3|L2t+1,2t+2〉 ) {I -

n - 2

n
P1 +

n - 4

n
P2 - ... +

n - n

n
(Pn/2)}(M - W) (23)
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and W appear with opposite signs, whereas in the singlet
functions, they have the same sign. Also, the number of
permutations is smaller for the triplet than for the singlet. For
instance, the number of pairwise permutations isP1 for the
singlet and only ((n - 2)/n)P1 for the triplet.

The triplet of theR structure can be written likewise as

The complete singlet wave function is therefore of the form

The triplet wave function is

(NS andNT are normalization constants).

3. The Relative Energies of the Lowest Lying Singlet and
Triplet States of an Even Parity Cyclic System

Equations 25 and 26 may be used to estimate the relative
energies of the states1|L-R〉 and3|L-R〉. It was shown recently
that the singlet (even though it is a transition state) is the ground
state of this system.20 By Hund’s rule, the triplet state would
be expected to have a lower energy. This would indeed be the
case if the energies were determined solely by the leading term
in eqs 25 and 26, namely the first term, as shown next

3.a. Contribution of the Identity Permutation. Under
these conditions, the wave functions of the singlet and the triplet
states are expressed asM + W andM - W, respectively. The
energies, apart from a normalization factor, are then, sinceHMM

) HWW,

A typical matrix element ofHMW is of the form 〈12h34h ...
2n-12n|H|1h23h4 ... 2n-12n〉. The molecular Hamiltonian is
written as H ) T + V, where V, the interaction potential,
contains terms involving interaction between the electrons and
the nuclei (Ven ) -(Ze2/RJi), whereZ is the charge on theJth
nucleus, andRJi is the distance between it and electroni, and
between two electrons (Vee) e2/rki), with rki being the distance
between the electronsi and k. These terms lead to two
contributions to the exchange integralHMW .26,27 The one-
electron term, due to the attractive interaction between the
electron in orbitalsi and i + 1 and the nuclei:

Here Sij is the overlap integral between the (nonorthogonal)
orbitals i and j. The sign change in the second to last line of
eq 29 is due to the permutation of the electrons between orbitals
i andi + 1. Sincehi,i+1 represents an attractive interaction, its
sign is negative, so thathi,i+1(I) provides a positive contribution
to HMW .

The two-electron term is the usual exchange integral of the
form

This term represents repulsive interaction (between two
electron clouds) and is much smaller than the one-electron term
so thathi(I) determines the sign of the combined effect of the
two terms.

The upshot of this discussion is that as long as we consider
only the contribution of the identity operators in eqs 25 and
26, the triplet state is lower in energy than the singlet, as
predicted by Hund’s rule.

3.b. Contribution of the Two-Electron Permutation Term
P1+P1°. Within the electron-pairing model, apart from the
contribution of the identity permutation, the largest contribution
to the stabilization energy of the system is due, by eqs 25 and
26, to terms such as〈I(M+W)|H|(P1+P1°)(M+W)〉, where
P1+P1° exchanges one electron pair. For the singlet state, this
term is of the form

and for the triplet, a similar expression (except that theM-W
replacesM+W) is multiplied by (n - 2)/n, see eqs 23 and 24.

To estimate the effect of these exchange terms, we note that
the contribution of cross integrals such as〈M |H|P1W〉 may be
neglected by comparison with the homogeneous ones such as
〈M |H|P1M 〉. This may be seen by considering the following
typical terms.

For 〈M |H|P1W〉 we have

This matrix element involves the interaction between two
nonneighboring orbitals (3 and 2n in this case), which are
neglected throughout the present paper, being much smaller than
the interactions between neighboring orbitals.

A similar procedure for〈M |H|P1M 〉 leads to

which, by arguments similar to those used in the previous

3|R〉 ) ∑
t)0

n - 1
3|R2t+1,2t+2〉 ) {I -

n - 2

n
P1° +

n - 4

n
P2° - ... +

n - n

n
(Pn/2°)}(M - W) (24)

1|L-R〉 ) Ns{2I - (P1 + P1°) + (P2 + P2°) - ...

(Pn/2 + Pn/2°)}(M + W) (25)

3|L-R〉 ) NT{2I - n - 2
n

(P1 + P1°) +

n - 4
n

(P2 + P2°) - ...}(M - W) (26)

E(S))〈L-R|H|L-R〉 ) 〈M + W|H|M+W〉 )
2HMM +2HMW (27)

E(T))〈3(L-R)|H|3(L-R〉 ) 〈M-W|H|M-W〉 )
2HMM -2HMW (28)

hi,i+1(I) ) 〈12h34h ... ii+1 ... 2n-12n|Ze2/RJi|1h23h4 ... ıji+1

... 2n-12n〉 ) S12S23S34 ... 〈ii+1 |Ze2/RJi|i+1ıj〉
... S2n-2,2n-1S2n-1,2n )

- 2S12S34 ... hi,i+1Si,i+1 ... S2n-2,2n-1S2n-1,2n

(hi,jSi,j * 0 for j ) i ( 1) (29)

gij (I) ) 〈12h34h ... ii+1 ... 2n-12n|e2/rij|1h23h4 ... ii+

1 ...2n-12n〉 ) S12S23S34 ... 〈ii+1 |e2/Rii+1| ıji+
1〉 ... S2n-2,2n-1S2n-1,2n )

S12S34 ... gi,i+1Si,i+1 ... S2n-2,2n-1S2n-1,2n (30)

〈I(M+W)|H|(P1+P1°)(M+W)〉 (31)

〈12h34h ... ii+1 ... 2n-12n|H|P11h23h4 ... ihi+1 ...2n-12n〉 )

〈12h34h ... ii+1 ... 2n-12n|H|12h3h4 ... ihi+1 ...2n-12n〉 )

1 ‚ 〈34h ... ii+1 ... 2n-12n|H|3h4 ... ihi+1 ...2n-12n〉 (32)

〈12h34h ... ii+1 ... 2n-12n|H|P112h34h ... ii+1 ... 2n-12n〉 )

〈12h34h ... ii+1 ... 2n-12n|H|1h234h ... ii+1 ... 2n-12n〉 (33)
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subsection, leads ton terms of the form

Again the two-electron termsgij are much smaller than the
one-electron ones so that, although they represent repulsive
interaction, the combined effect ofhi(P1) is attractive. Note
that this term is in general larger than the correspondinghi(I)
(eq 29), which contains the product of a large number of overlap
integrals (all smaller than unity).

With the neglect of the cross terms, we can estimate the
energy difference between S0 and T1 as follows.

The energy difference between the singlet and the triplet is:

(n is the number ofP1 permutations, each contributing the same
value).

The sign may be determined by the same arguments as
presented in section 3.a, taking into account of the fact thathi

is negative and that each permutation changes the sign of the
determinant. It is found that the singlet state is the more stable
one. This result was obtained by Goddard and Voter in the
special case of CB.12 Therefore, their conclusion, namely “the
dynamic spin polarization correlation effect is merely the static
spin-pairing of bond orbitals impicit in resonating VB wave
functions”; is actually applicable to all antiaromatic systems.

The following three comments are in order.
1. The stabilization of the singlet with respect to the triplet

due to theP1 contribution vastly outweighs the stabilization of
the triplet due to the identity term. The latter is (eq 29)

which can be seen to be much smaller thanhi(P1) ) hii+1Si,i+1,
as eachSi,i+1 is less than 1 (a value of 1/4 is a reasonable
estimate for cyclic conjugated hydrocarbons).

2. All higher terms, due toPi, i > 1, are much smaller than
the first correction, since two permutations lead to interaction
terms between nonneighboring orbitals.

3. Summing over alln one-pair permutations, we see that
∆E(S-T) is essentially independent ofn, i.e., the ring size.This
result predicts, therefore, that if indeed the one-pair permutation
term is the dominant one, the singlet-triplet separation in all
antiaromatic compounds will be the same.

The ground singlet state, formed by the out-of-phase com-
bination of the two Kekule´ structures, transforms as a non-totally
symmetric irreducible representation of the point group. As
noted previously,20,22the most symmetric structure is a transition
state for reaction along the Kekule´ coordinate. The H4 and H8

systems were found to be useful model systems to check
reactivity patterns; in the absence of other stabilizing effects
(such asσ bonding in conjugated cyclic hydrocarbons), the
“natural” reaction routes of are found by considering the normal
modes. Thus, the Kekule´ modes were found to yield two and
four molecules from the S0 state of H4 and H8, respectively.

In contrast with the ground state, the T1 state cannot form
dimeric H2 molecules as the sole products. Two H atoms must
be formed: it will dissociate to yield two atomic fragments and

one or more molecular ones. The mode responsible for this
reaction is the degenerate eu mode. We have carried out
quantum chemical computations on these two model systems,
and as shown in the next section, all these predictions were
corroborated. Computations were also made on several sym-
metric cyclic conjugated hydrocarbons, either single ring ones
such as CB and C8H8 (cyclooctatetraene, COT) or bridged rings
such as pentalene and heptalene. We find that all these
predictions are indeed borne out by the computations. In the
hydrocarbons, the triplet states are not dissociative, apparently
due to the restrainingσ bonds. However, the frequencies of
the eu modes that lead to reaction in the H2n systems are found
to decrease in T1 compared to S0 in the hydrocarbon molecules,
indicating a decrease of the corresponding force constants.

4. Computational Results

The calculations were performed using the CAS (complete
active space) method, with allπ electrons and the same number
of orbitals. To compare the different molecules on a common
basis, the calculations were done with a relatively modest basis
set (3-21G), yet these CAS(8,8) calculations (for the cases of
COT and pentalene) and CAS(12,12) for heptalene are fairly
extensive even with this basis set. Optimization was carried
out under a symmetry constraint (D4h symmetry for H4 and CB,
D8h symmetry for H8 and COT,D2h symmetry for pentalene
and heptalene). The geometries were optimized for all mol-
ecules in S0 and in T1, and vibrational analysis was done for all
except heptalene. In S0, the system is found in a transition state
so that one or two of the normal modes have imaginary values.
The symmetry constraints were removed or the normal mode
analysis. The numerical values of some calculated properties
(for instance, the vibrational frequencies) may be changed by
using a larger basis set, but the trends, which are the main point
of this paper, are not expected to vary.

hi(P1) ) 2hii+1Si,i+1 + gij (34)

∆E(S-T) ) (2/n) ‚ 〈I(M )|H|(P1+P1°)(M )〉 + (2/n) ‚
〈I(W)|H|(P1+P1°)(W)〉 ) (2/n) ‚ 4〈I(M )|H|P1M )〉 )

(8/n)nhii+1Si,i+1 ) 8hii+1Si,i+1 ) 8hi(P1) (35)

hi,i+1(I) ) -2S12S34 ... hi,i+1Si,i+1 ... S2n-2,2n-1S2n-1,2n

Figure 2. Schematic representation of the correlation between the
frequencies calculated for H4 in the S0 and the T1 states. Imaginary
frequencies (indicating a transition state) are also shown and correlated.
Only in-plane modes are shown.

Two-State Model of Antiaromaticity J. Phys. Chem. A, Vol. 102, No. 52, 199810855



The relative energies of the two singlet twin states and the
lowest triplet were previously reported for some of the molecules
discussed in this paper.22 It was found that the ground state
transforms in all cases as the non-totally symmetric B1g

representation, as predicted by the twin-state model, and the
triplet transforms as the A2g representation (D4h or D8h point
groups), or B1g (D2h point group). In Table 1 we summarize
the computational results for the energies and the geometries
of the S0 (transition state, i.e., most symmetric form) and T1

states of H4, H8, CB, pentalene, COT, and heptalene. It is seen
that the equilibrium geometries of the symmetric forms of S0

and T1 are very similar for the hydrocarbons, while in the H4n

systems, there is a considerable bond contraction upon going
from S0 to T1. ∆EST is quite small for all molecules and fairly
constant (0.6( 0.15) throughout the series. Tables listing the
calculated vibrational frequencies of the most symmetric form
(transition state) of the lowest singlet and of the lowest triplet
are available on request. It was found that the out-of plane
vibrational frequencies for both states were essentially the same
for a given molecule. The in-plane modes’ frequencies (exclud-
ing CH stretch modes for the hydrocarbons) are shown in
Figures 2-6. The imaginary frequencies are included in order
to underline the similar trends found in all systems. The results
indicate that in general very little change is found for most in-
plane modes. In the H4n species, there is a slightincreaseas

the system changes from S0 to T1, while in the hydrocarbons
the reverse is true. However, two sharp exceptions to that
generalization are found for two in-plane modes, the Kekule´
mode and an eu mode leading to formation of two atoms in the
case of H4 and H8. The frequencies of these vibrational modes
were calculated to be imaginary, indicating a transition state.
Figure 7 shows schematically the vector displacements of the
atoms in the eu modes of H4 (or CB) and H8 (or COT). In the
hydrocarbons, dissociation along a similar coordinate is not
possible due to theσ structure binding, but we find a distinct
decreasein the frequency of corresponding vibrations. The
change is most drastic in pentalene (from 1172 to 590 cm-1,
but is also considerable in COT (1446 to 1263 cm-1) and CB
(930 to 830 cm-1), as seen from Figures 4-6.

Discussion

5.a. Energetics and Geometry of the Triplet State.It was
shown previously that the ground singlet state of the most
symmetric form of even parity systems is necessarily distortive

TABLE 1: Calculated Properties of Some Even Parity Molecular Systemsa

moleculeb CB COT pentalene heptalene H4 H8

∆E(ST)c (eV) 0.55 0.75 0.67 0.67 0.44 0.58
rC-C (Å) (rH-H for Hn)

11B1g 1.459 1.404 1.433, 1.404, 1.509 1.394, 1.399, 1.417, 1.509 1.340 1.100
tripletd (min) 1.456 1.403 1.432, 1.405, 1.498 1.394, 1.398, 1.420, 1.501 1.280 1.082

a Calculations at the CAS(4,4) level for H4, CB, at CAS(8,8) for H8 COT, and pentalene, and at CAS(12,12) for heptalene, all using the GAMESS
program suit. The basis set was 6-31G for H4 and H8, 4-31G for CB and pentalene, and 3-21G for COT and heptalene.b CB, cyclobutadiene; COT,
cyclooctatetraene.c ∆E(ST) ) the energy separation between the symmetric singlet atê ) 0 (1B1g symmetry) and the first triplet at its optimized
geometry (3A2g symmetry).d The symmetry of the first triplet is 13A2g in the D4h and D8h point groups and 13B1g in the D2h point group.

Figure 3. Schematic representation of the correlation between the
frequencies calculated for H8 in the S0 and the T1 states. Only in-plane
modes are shown.

Figure 4. Schematic representation of the correlation between the
frequencies (excluding CH stretch modes) calculated for CB in the S0

and the T1 states. Only in-plane modes are shown. Note the frequency
decrease of the eu mode in the triplet.
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along the Kekule´ coordinate.20 This tendency was ascribed to
the fact that there are two “extra” electrons, which resonate with
the other pairs but do not pair in the symmetric structure and
tend to separate into two doublets or stabilize a distortive
structure of bond-alternating nature. In the triplet, the most
symmetric form can be maintained, since these two electrons
cannot form a bond, losing their distortive power. Therefore,
the system is now essentially an odd parity system, with an
odd number of electron pairs. Such a system has a characteristic
aromatic stabilization so that the lowest lying triplet is expected
to have an aromatic character. This was indeed found to be
the case by previous MO treatments,28 but the physical basis,
the permutational symmetry of the system leading to strong
resonance stabilization between several VB structures (see
Figure 1), was not explicitly stated.

The calculations show that the lowest lying triplet state is
that due to the most symmetric possible structure. This is not
necessarily the case, as comparison with odd parity cyclic
(aromatic) systems shows; it is well-known that in those systems
the lowest lying triplet is distorted away from the most
symmetric structure. Thus, in benzene, the symmetric3B2u is
higher in energy than both distorted3B1u and3E1u. This trend
may be understood by reference to Figure 8. In a triplet state,
the two unpaired electrons tend to move apart as far as possible,
as requested by the Pauli principle. In benzene, for instance,
this is easily achieved by having the two electrons in the para
positions and stretching the molecule as shown in Figure 8a.
This entails losing aC3 symmetry axis and keeping the
remaining two double bonds equivalent parallel to the newC2

axis. Using the example of COT (Figure 8c), it is shown that
a similar distortion in an even parity system is not possible
without a considerable energy increase; lacking an odd parity
symmetry axis, one has to destroy an even parity axis,
necessarily creating a considerably longer new bond. Such a
triplet state is expected to be of higher energy that the symmetric
one discussed above. The eu distortion shown in Figure 8b
largely preserves the equilibrium bond lengths of the singlet
ground state.

According to eq 15, the main contribution to the energy
difference∆E(S-T) between S0 and T1 is the exchange integral

Figure 5. Schematic representation of the correlation between the
frequencies (excluding CH stretch modes) calculated for COT in the
S0 and the T1 states. Only in-plane modes are shown. Note the frequency
decrease of the eu mode in the triplet.

Figure 6. Schematic representation of the correlation between the
frequencies (excluding CH stretch modes) calculated for pentalene in
the S0 and the T1 states. Only in-plane modes are shown. Note the
large frequency decrease of the eu mode in the triplet.

Figure 7. Vector displacements of the eu modes of H4 and H8 in the
singlet and triplet states (schematic). Similar displacements are found
for the carbon skeleton of CB and COT, respectively.
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hi(P1). The computational results confirm the prediction of
almost constant∆E(S-T) for all molecules studied, with an
average value of about 0.6 eV.

5.b. Reactivity Patterns of the Triplet State. The A2g

triplet states of the antiaromatic molecules have a biradical
character, as does the lower lying singlet state. We have shown
earlier that the singlet tends to distort along the Kekule´ mode;20

this tendency is completely absent in the low lying triplet. It
is found that all triplet states are stable, as shown by the fact
that all vibrational frequencies are real. This finding is in accord
with the present model. The two nonbonding electrons tend to
be spread out over the entire molecular frame. The chemical
behavior of the system is revealed in the H2n systems, which
are “bare-bones” ones; the stability of the bonds depends solely
on the n electron pairs considered in the model. (In the
antiaromatic hydrocarbons, theσ CC bonds may counteract their
possible pristine effects).

As shown in Figure 2, both the1B1g and the3A2g states of
H4 are dissociative. The first dissociates along the Kekule´
coordinate forming two H2 molecules (a b1g mode) and also
into one H2 molecule and two H atoms (an eu mode). The
second dissociates only along the eu coordinate only. This is a
manifestation of the inherent force field of the triplet state; the
system tends to form radical centers (doublets). Moreover, the
reaction takes place in the plane of the molecule. The reason
that the triplet state does not tend to form two new bonds is
clear; the two parallel electrons cannot form a single bond. In
a larger system (such as H8), an out-of-plane distortion becomes
more likely. However, as Figure 3 shows, the only dissociative
mode of the triplet is again an in-plane eu one.

Since the symmetry properties of the 4n electrons in the
hydrocarbons are the same as those of the H4n systems, the
reaction modes are expected to be of the same symmetry.
Indeed, it is found that reaction patterns revealed in the H4n

systems are repeated in the even paired cyclic hydrocarbons in
both singlet and triplet states. Thus, in COT, the ground-state
D8h form distorts first toD4h symmetry along the b1g mode.
This forms the bond-alternating structure, which can now bend
due to the presence of weaker single CC bonds along the
perimeter. In contrast, the triplet state of COT will tend to

distort along an eu mode, just like that of H8. This is evident
from the fact that while the frequencies of all other vibrational
modes are essentially equal in the1B1g and the3A2g states, this
mode’s frequency decreases appreciable in the triplet state in
comparison with the B1g ground state (from 1446 to 1263 cm-1).
Similar frequency decreases were calculated for CB and
pentalene for this mode.

5.c. Singlet-Triplet Ordering in Other Biradicals. An-
tiaromatic molecules are one example of biradicals, molecules
in which the energy difference between S0 and T1 is small. Since
spectroscopic transitions between the singlet and triplet systems
are very weak and practically unobservable, the energy ordering
of these two states has often been a matter of dispute. The
electron photodetachment method makes it possible to observe
both low lying states in the gas phase and provides a growing
database for comparison with theory. For instance, it is found
that 1,3-dimethylenebenzene (DMB) has a triplet ground state,29

while tetramethyleneethane (TME) has a singlet ground state.18

These results are readily explained within the present model
(Figure 9) by noting that in DMB the two nonpaired electrons
do not resonate with the others and Hund’s rule holds as is well-
known for other nondegenerate systems such as atoms and linear
molecules (O2, NCN). In contrast, TME is a genuine two-state
system as shown in Figure 9; the two nonpaired electrons are
part of the resonating two-state structures, and therefore, our
model predicts that the singlet state is of lower energy, in
agreement with experiment.

The trimethylenemethane (TMM) biradical is also found to
have a triplet ground state;30 this is explained by noting that
TMM has a 3-fold axis, and therefore, a symmetric form would
be genuinely degenerate (Eu symmetry). By the Jahn-Teller
theorem, it distorts to aC2V symmetry, for which there is only
one VB structure, a case in which Hund’s rule holds. Thus,
the model provides a simple criterion for determining the relative
singlet-triplet ordering for any biradical.

Figure 8. Effect of b1u distortion on the shape of the triplet states of
(a) benzene (an odd parity system having aC3 symmetry axis) and (c)
COT (an even parity system that does not). The latter unavoidably
involves a large energy destabilzation due to the formtion of a “long”
bond. An eu displacement of COT, in which no excessive bond
stretching is required, is shown in (b) for comparison.

Figure 9. (a) VB structures of DMB and TME radicals; there are two
for DMB, but the two nonpaired electrons do not resonate with the
ring electrons. In TME, the two electrons are part and parcel of the
two resonating structures. Hund’s rule holds for DMB but not for TME
(see text). (b) VB structures of TMM radicals; there are three for the
symmetric form. Since it is genuinely degenerate, having aC3 symmetry
axis, Jahn-Teller (JT) distortion leads to a singleC2V structure so that
Hund’s rule holds.
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Summary

The main result of this paper is that, in all antiaromatic
molecules, Hund’s rule is not expected to hold; in the most
symmetric form the singlet is of lower energy than the triplet.
This result, which was previously obtained for CB, is shown
here to be of a general nature. It arises from the fact that the
system can be represented by two equivalent structures and from
permutational symmetry arguments. This result holds for any
even parity system, such as perpendicular ethylene and many
other biradicals. This theoretical prediction was recently
substantiated by photoelectron detachment experiments.

In antiaromatic (even parity cyclic) systems, the ground
singlet state of the most symmetric structure has an “extra”
electron pair that cannot participate in stabilizing two-electron
bonds. It therefore imparts a biradical character to the molecule.
Moreover, the singlet system can stabilize by distorting along
the Kekulémode. This stabilization is not possible in the triplet
(the parallel spin electron pair cannot form a bond). Therefore,
the triplet dissociates into atomic fragments in the case of H4

and H8, whereas the singlet dissociates into hydrogen molecules.
In the hydrocarbons, theσ frame keeps the triplet bound and
the dissociation tendency is expressed in the reduction of the
force constant (and frequency) in the corresponding normal
modes. Thus, in the even parity conjugated hydrocarbons, the
symmetric triplet is bound and, being very close to the singlet
ground state, is the lowest lying bound excited state of the
system.
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